Skip to main content
Logo image

Section 4.11 Practice Solving System of Equations

Let’s practice solving a system of linear equations!
Electrical circuit
Figure 4.1. Electrical Circuit Problem

Activity 4.12.

(a)

First, solve for the current through \(R_6\) in the lumped circuit. What is the current through \(R_6\text{?}\)
Answer.
\(I_3 - I_4\)

(b)

To find all unknown currents, use Kirchoff’s Voltage Law:
\begin{equation*} \Sigma_{loop} \ V_i = 0 \end{equation*}
What are the equations for each current loop?
Answer.
\begin{equation*} V_1 - I_1R_1 + (I_3-I_1)R_3 + (I_2-I_1)R_2 = 0 \end{equation*}
\begin{equation*} -I_2R_5 + (I_1-I_2)R_2 + (I_3-I_2)R_4 + (I_4-I_2)R_7 = 0 \end{equation*}
\begin{equation*} -V_2 + (I_4-I_3)R_6 + (I_2-I_3)R_4 + (I_1-I_3)R_3 = 0 \end{equation*}
\begin{equation*} V_3 - I_4R_8 + (I_2-I_4)R_7 + (I_3-I_4)R_6 = 0 \end{equation*}

(c)

Rewrite the equations in matrix form:
\begin{equation*} R \ I = V \end{equation*}
Recall that we used to call the coefficient matrix A (not R) and the vector of unknowns x (not I). We used to call the right-hand side b (not V).
\begin{equation*} A \ x = b \end{equation*}
Answer.
\begin{equation*} \begin{bmatrix} -(R_1+R_2+R_3) & R_2 & R_3 & 0 \\ R_2 & -(R_2+R_4+R_5+R_7) & R_4 & R_7 \\ R_3 & R_4 & -(R_3+R_4+R_6) & R_6 \\ 0 & R_7 & R_6 &-(R_6+R_7+R_8) \end{bmatrix} \begin{bmatrix}I_1\\I_2\\I_3\\I_4\end{bmatrix} = \begin{bmatrix}-V_1\\0\\V_2\\-V_3\end{bmatrix} \end{equation*}

(d)

Put some numbers in for the known quantities:
\begin{equation*} V_1 = 20V \ \ \ \ \ R_1 = 18\Omega \ \ \ \ \ R_4 = 6\Omega \ \ \ \ \ R_7 = 12\Omega \end{equation*}
\begin{equation*} V_2 = 12V \ \ \ \ \ R_2 = 10\Omega \ \ \ \ \ R_5 = 15\Omega \ \ \ \ \ R_8 = 12\Omega \end{equation*}
\begin{equation*} V_3 = 40V \ \ \ \ \ R_3 = 16\Omega \ \ \ \ \ R_6 = 8\Omega \end{equation*}

(e)

Try solving this in MATLAB.
Answer.
>> V1 = 20; V2 = 12; V3 = 40;   % create voltages (V)
>> R1 = 18; R2 = 10; R3 = 16;   % create resistances
>> R4 = 6;  R5 = 15; R6 =  8;   %   (Ohms)
>> R7 = 12; R8 = 14;
% create resistance matrix R
>> R = [-(R1+R2+R3)
R2 R3 R2 -(R2+R4+R5+R7)
R4 R7 R3 R4 -(R3+R4+R6)
R6 0 R7 R6 -(R6+R7+R8)];
>> V = [-V1; 0; V2; -V3];
>> I = R\V
I =
    0.8411
    0.7206
    0.6127
    1.5750
>> I(3)-I(4)
ans =
    -0.9623