Skip to main content
Logo image

Section 4.3 Scalar Multiplication

In linear algebra, scalar multiplication allows us to multiply an array by a number. This simply means that each element of the array is multiplied by that one number.
In MATLAB, this operation is performed by simply using the * operator. Take a look at this example:
>> A = [8 5 3; 1 2 5];
>> B = -2 * A
B =
    -16 -10 -6
     -2 -4 -10
You can see that each element of A is simply multiplied by the scalar (in this example: -2).

Activity 4.1.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \(A + B = B + A\text{?}\)

Activity 4.2.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \(5(A + C) = 5A + 5C\text{?}\)

Activity 4.3.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \(A\times (B + C) = A\times B + A\times C\text{?}\)

Activity 4.4.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \(A\times B = B\times A\text{?}\)

Activity 4.5.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \((A\times B)^T = B^T\times A^T\text{?}\)

Activity 4.6.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \((A\times B)\times C = A\times (B\times C)\text{?}\)

Activity 4.7.

Create the following three matrices:
\begin{equation*} A = \begin{bmatrix} 2 & 4 & -1\\ 3 & 1 & -5\\ 0 & 1 & 4 \end{bmatrix}, \; B = \begin{bmatrix} -2 & 5 & 0\\ -3 & 2 & 7\\ -1 & 6 & 9 \end{bmatrix}, \; C = \begin{bmatrix} 0 & 3 & 5\\ 2 & 1 & 0\\ 4 & 6 & -3 \end{bmatrix} \end{equation*}
Is \((A+B)^T = A^T + B^T\text{?}\)