Skip to main content
Logo image

Section 4.1 Addition and Subtraction

Two vectors or two matrices can be added or subtracted in MATLAB just as they are added in Linear Algebra, using the simple + or - operator.
Vectors and matrices must be the same size (dimensions) in order for this to work:
If
\begin{equation*} x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \end{equation*}
and
\begin{equation*} y = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 \end{bmatrix} \end{equation*}
then
\begin{equation*} x + y = \begin{bmatrix} (x_1+y_1) & (x_2+y_2) & (x_3+y_3) & (x_4+y_4) \end{bmatrix} \end{equation*}
and
\begin{equation*} x - y = \begin{bmatrix} (x_1-y_1) & (x_2-y_2) & (x_3-y_3) & (x_4-y_4) \end{bmatrix} \end{equation*}
Check out the following MATLAB example:
>> va = [8 5 3]; vb = [2 9 4];
>> vc = va - vb
vc =
    6  -4  -1
The same syntax works to add and subtract matrices instead of just vectors:
If
\begin{equation*} A = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \end{bmatrix} \end{equation*}
and
\begin{equation*} B = \begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23} \end{bmatrix} \end{equation*}
then
\begin{equation*} A + B = \begin{bmatrix} (a_{11}+b_{11}) & (a_{12}+b_{12}) & (a_{13}+b_{13})\\ (a_{21}+b_{21}) & (a_{22}+b_{22}) & (a_{23}+b_{23}) \end{bmatrix} \end{equation*}
and
\begin{equation*} A - B = \begin{bmatrix} (a_{11}-b_{11}) & (a_{12}-b_{12}) & (a_{13}-b_{13})\\ (a_{21}-b_{21}) & (a_{22}-b_{22}) & (a_{23}-b_{23}) \end{bmatrix} \end{equation*}
Check out the following MATLAB example:
>> A = [8 5 3; 1 2 5]; B = [2 9 4; 6 3 2];
>> C = A + B
C =
    10 14  7
     7  5  7